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On 31 March 1833, the Turkish garrison of the Athenian Acropolis, 
which counted 250 men under the orders of Osman Effendi, sur-
rendered to the Bavarians. This occurred three years after Greece 
had been established as an independent state, two months after 
the appointment of Otto of Bavaria as King of Greece, and three 
months prior to the decision to make Athens the capital of the 
new kingdom.� Over a year later, on 18 August 1834, the German 
architect Leo von Klenze persuaded the Bavarian Regency to ab-
olish the status of the Acropolis as a military installation, to take 
the necessary steps for the removal of  “the distorting ruins and 
the rubbish heap of modern buildings” from the sanctuary, and to 
support the restoration of  the “columns and the walls of the cella 
of the Parthenon using the existing, considerable remains.”� 

Klenze’s idealist vision was the revival of the ancient mo-
nument in all the classical glory it had attained during Periclean 
times. The fulfilment of this objective implied the complete elimi-
nation of all traces that history had left on the Athenean sanctuary 
since the 5th century B.C. This operation, however, very soon tur-
ned out to be a blessing for research into classical architecture. All 
of a sudden, certain aspects of this architecture, which had slipped 
the attention of earlier researchers of antiquity – even of those 
who had until then been among the most successful, such as the 
British James Stuart and Nicholas Revett –,  became  visible. One 
of these aspects were the curvatures of the biggest building on the 
Acropolis: the Parthenon.

The English architect J. Pennethorne and, almost simultane-
ously, the German governmental architect Joseph Hoffer remar-
ked  that “all structural lines of the building, which have hitherto 
been assumed to be straight and level” were curves. Shortly the-
reafter, Hoffer  published the results of his observations in Ludwig 
Förster’s Wiener Allgemeine Bauzeitung.� Pennethorne did not re-
lease his own insights until six years later, although he did so in a 
publication that was only intended for private distribution.�

It was however not before The Principles of Athenian 
Architecture, a monumental book written by the English architect 
Francis Cranmer Penrose, that the new discovery attracted speci-
alist interest. The richly illustrated outcome of extensive in situ 
research and measurements was published in 1851 by the Society 
of the Dilettanti. Its rather elaborate subtitle – Result of a recent 
survey conducted chiefly with reference to the optical refinements 
exhibited in the construction of the ancient buildings at Athens 
– introduced the term “refinements”, which designates all known 
or up to then unknown deviations from the straight horizontal or 
vertical lines that could be detected in the structural members of 
Greek classical monumental buildings. Concerning the problem of 
curvatures (incidentally, a further notion introduced by Penrose), 
he remarked in chapter III of his book:

“The most important curves in point of extent are those which 
form the horizontal lines of the buildings where they occur; such 
as the edges of the steps, and the lines of the entablature, which 
are usually understood to be straight level lines, but in the steps 
of the Parthenon, and some others of the best examples of Greek 
Doric, are convex curves, lying in vertical planes; the lines of the 
entablature being also curves nearly parallel to the steps, and in 
vertical planes.”

However, the extraordinary significance of these lines was, 
in reality, not only grounded in their greater extension, but ori-
ginated above all from the fact that they appeared to be entirely 
new around the mid-19th century. For, in contrast to other “refine-
ments”, the existence of which had long been known, such as the 
upward diminution of the column or the outward curvature of the 
column shaft, which the Greeks called entasis, knowledge about 
horizontal curvatures and the practice of their construction had 
faded into oblivion for centuries (Fig.1). The Roman architectural 
theoretician, Vitruvius, may have had a dedicated readership since 
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the Renaissance, but it was not intelligible what he meant exactly 
when he expressly recommended that the level of the stylobate 
(i.e., the substructure on which the colonnade stands) “must be 
increased along the middle by the scamilli impares; for if it is laid 
perfectly level, it will look to the eye as though it were hollowed 
a little.” (Vitruvius 3.4.5) The method (“by the scamilli impa-
res”) suggested by Vitruvius for the construction of this addition 
(adiectio) was even less clear, since the corresponding illustration 
mentioned in the text was missing.

Perhaps this background also explains the resistance that 
Penrose’s 1851 publication met. No other than the famous Berlin 
architect and archaeologist Carl Bötticher directly warned his 
contemporaries against Penrose’s assertions:

„The curvatures of the Parthenon have, since they have be-
come known, gained a wholly undeserved significance and have 
led to the most paradoxical inferences. Not only amateurs have, 
through Penrose’s work, been deluded into believing his re-disco-
vered miracle. Practical architects, who were not so familiar with 
the nature of ancient construction, have equally been deceived.“�

Penrose’s conservative opponents refused to accept that the 
construction of the curvatures was intended by the ancient archi-
tects and asserted instead that the deviations were in reality irre-
gularities that could be traced back to inaccurate construction or 
deformations caused by the setting of the ground or the external 
application of violence.� The resistance of this group of scholars 
did not last long. In 1912, when the first book exclusively dedica-
ted to the “Greek Refinements” appeared, hardly anyone serious-
ly doubted anymore that the curvatures were the result of intent 
rather than a consequence of chance. Its author was the American 
William Henry Goodyear, director of the Brooklyn Museum at 
that time.�

But once the problem of intention was solved, a series of 
other questions came to the fore of interest. One of the most im-
portant among these concerned the character of the curves. Were 
they at all the product of mathematical calculations and, if so, 
what kind of calculation? The question had already occupied the 
first researchers. Hoffer, for example, was certain with regard to 
the stylobate of the Athenean Parthenon, that it was a “segment 
of a circle” (381), the radius of which he estimated for the west 
side of the building to amount to 1853 pecheis�. Penrose, on the 
other hand, favoured the parabola (p. 30):

„It appears not unlikely that the arc of a parabola may have 
been used for this purpose, a figure with which the builders were 
well acquainted, and which in the space of a man’s hand would 
give full-size ordinates, which would serve as offsets from a 
straight line to form the required circular arc, with the utmost 
facility – and in so small an arc with perfect accuracy.“
Nevertheless, Penrose left some doubt concerning the character 
of the curve, and did not rule out the possibility of the circle line. 
On the other hand, he omitted to disclose whence he had acquired 
such certainty that the “builders (in Periclean time) were well ac-
quainted” with the construction of a parabola.

However, the debate about the mathematical character of the 
curve reached a climax in the 1930s. In 1934, Gorham Phillips 
Stevens, an American architect, archaeologist and former Director 
of the American Academy in Rome (1917-32), published an es-
say�, in which he connected Penrose’s measurements with the 
curvature theory of Auguste François Choisy, a French engineer 
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and historian of architecture. In his 1909 French translation of 
Vitruvius, Choisy had equally interpreted the Vitruvian addition 
(adiectio) as a parabola. But he also put forward the hypothesis 
that the increments of the vertical ordinates of the parabola follo-
wed a sequence of odd numbers. As Stevens then came to explain, 
it is a parabola where the constant c of the general parabola-for-
mula x = cy2 has the value 1. In this specific case, for y = 0, 1, 2, 
3, 4, ... the x values become 0, 1, 4, 9, 16, ... respectively. The 
specific parabola may be plotted according to Fig. 2, Stevens con-
tinued. And he stated:

„If the point generating the curve be considered as starting at 
the origin 0, its successive drops (or downward steps) are repre-
sented by the successive odd numbers 1, 3, 5, 7, 9, etc., while the 
point is passing through unit distances horizontally.“

Stevens repeated Choisy’s argument that the steps formed by 
the ordinates of this curve possibly correspond with Vitruvius’ 
scamilli (“scamillus” meaning “bench”, “seat” or “step” in Latin), 
whereas the latter’s characterisation of the scamilli as impares 
(Latin for “uneven, “unequal” or “dissimilar”) could indeed point 
to the odd numbers of the steps’ increments. If this assumption 
were right, the Vitruvian method for the construction of the cur-
vature “by the scamilli impares” would be explained (Fig. 2). 
The advantage of the method would be double:

1. It would enable the determination of the curvature in sty-
lobates of any width, for the horizontal coordinates of this type 
of curve may be increased or decreased in any proportion; the 
vertical coordinates would remain unchanged. Thus a parabola 
“drawn by the method of small steps having risers of successive 
odd numbers, will coincide with the parabolic curve of any sty-
lobate” (536f.).

2. It offered the architect a simple way of laying out his cur-
ves in full size upon the vertical faces of the steps of his building. 

To determine the curvature of the top step, for example, he would 
proceed as follows: He would firstly determine (in real size) the 
maximum rise of the top front and top side step respectively on 
separate working drawings in which he would have drawn the re-
spective horizontal distances (e.g. the width of the step, distances 
of columns) on a smaller scale. He would mark on the four angles 
of the top step the desired extremities of his curves, connect the 
markings with straight lines on the vertical faces of the step, and 
erect vertical lines through relevant points (e.g. corresponding 
to axes of columns etc.) which he would have previously loca-
ted on them. Finally he would make the heights of these lines 
equal to the heights of the corresponding lines on his small scale 
drawings. The tops of the vertical lines would lay on the desired 
curve. (540f.)
All this would remain without great meaning, had this type of cur-
ve maintained the abstract-theoretical status, which it still had in 
Choisy. But Stevens asserted that the curve described by Choisy 
corresponded with the horizontal curvatures of the Parthenon 
according to the measures established by Penrose. However, he 
omitted to demonstrate this in detail. 

Here, the mathematician Constantin Carathéodory spoke up. 
He was not the first mathematician to have taken a stance on 
the question of curvatures. Guido Hauck, a professor of descrip-
tive geometry and graphostatics at the Königliche Technische 
Hochschule in Berlin, attmpted to establish in a treatise on per-
spective (1879) a connection between curvature and physio-psy-
chological perception.10 With respect to the “mathematical desi-
gnation” of the curve, Hauck noted that, regardless of Hoffer and 

10 	 Guido Hauck: Die subjektive Perspektive und die horizontalen Cur-
vaturen des Dorischen Styls – Eine perspektivisch-ästhetische Stu-
die. Stuttgart 1879.

Fig. 1   Doric temple showing exaggerated refinements. From: J. J. Coulton: Greek Architects at Work – Problems of Structure and Design. Ithaca, 
New York 1982 (1977), p. 108.
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Penrose’s preferences, both the cosinus line, which he personal-
ly favoured, and the hyperbola equally came into question. He 
added that, thanks to the weakness of the flexion, all designated 
curves would more or less harmonise with the given measure-
ments (p. 139). 

Carathéodory placed exactly this question, that is, the ques-
tion about the “mathematical law” concerning the curves of the 
Parthenon stylobate, at the heart of his reflection. In an essay pub-
lished in the Αρχαιολογική Εφημερίς (Archaeological Newspaper) 
in 193711, he referred directly to Gorham Stevens’s article that 
had appeared three years before: 

„Mr Stevens’s observations and calculations are basical-
ly correct, but this does not prevent us from considering as an 
impossibility the hypothesis that the architect of the Parthenon 
wanted to build parabolic curves. The concept of conic sections 
in general and that of the parabola in particular was significant-
ly posterior to the 5th century B.C.“

Carathéodory did not explain how such “impossibility”, i.e., 
Stevens’s parabola, could be correct. Instead, he amplified the 
contradiction by explaining that the curves of the Parthenon were 
circles with very big radii. At the same time, he added that the-
re was “no other method” in constructing these circles in space 
“than that which Stevens describes by drawing on the passage 
he quotes from Vitruvius.” As is known, however, Stevens did 
not describe a circle but a parabola. Carathéodory subsequently 
presented a method of approximation for the construction of circ-
le-like curves with big radii and unflinchingly provided the proof 
that the stylobate curves of the north, east and south sides of 
the Parthenon were circles. He made use of new measurements, 

11 	 Constantin Carathéodory: Über die Kurven am Sockel des Parthenon 
und die Abstände seiner Säulen. In: Constantin Carathéodory. Ge-
sammelte Mathematische Schriften. Vol. 5. 1957, pp. 257-262. See 
also: Maria Georgiadou. Constantin Carathéodory – Mathematics 
and Politics in Turbulent Times. Berlin, Heidelberg, New York 
2004, p. 344ff.

which D. Lampadarios, professor of the Technical University of 
Athens and director of the surveying office at the Greek ministry 
of transport, had carried out on Nikolaos Balanos’s behalf, who 
was a long-time restorer of the Acropolis. Carathéodory found 
out that the radius of the curvature amounted to 1850 metres at 
the short sides of the temple, a measurement corresponding rat-
her accurately with Joseph Hoffer’s estimation in 1838 (Hoffer, 
however, was not mentioned by Carathéodory). The segment of 
circle of the long sides had a radius of 5561 metres.

Despite all the contradictoriness and the fact that Carathéodory 
appeared conspicuously indifferent to the problem of whether his 
theory could be realised on the construction site (for example, 
with the aid of working drawings under scale), his critique of 
Stevens contained a point  that could not be ignored: How did 
Iktinos and Kallikrates, the Parthenon architects, manage to lend 
the form of parabolas to the horizontal curvatures of their buil-
ding, if, after all, the parabola was unknown as a mathematical 
concept at that time? Stevens faced this question in an answer to 
Carathéodory12. He admitted that “it was not until the middle of 
the 4th century B.C. that the mathematician Menaichmos disco-
vered the parabola, ellipse and hyperbola”, but at the same time 
he argued: “It hardly seems possible, however, that the conic sec-
tions, which possess delightful intricacies, sprang fully formed 
from the brain of any one man, like fully armed Athena from the 
head of Zeus. Without doubt he codified and amplified such trea-
tises on the conics as had been written before his day.” Anastasios 
Orlandos, a Greek architect and archaeologist, later attempted to 
give an answer to the same question. In his monumental book 
“The Architecture of the Parthenon”,13 he claimed that the circle, 
ellipse, parabola, and hyperbola and thus the four conic sections 

12 	 Gorham Phillips Stevens, The Curve of the North Stylobate of the 
Parthenon, Hesperia 12 (1943), 135-143.

13 	 Αναστάσιος Κ. Ορλάνδος: Η αρχιτεκτονική του Παρθενώνος (Anasta-
sios K. Orlandos: The Architecture of the Parhenon). Athens 1995 
(1977-1978), pp. 132, n. 3.

Fig. 2   Explanation of the scamili impares. From: G. P. Stevens, Concerning the Curvature of the Steps of the Parthenon, AJA 38 (1934) 537.
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must have been known since the 6th century B.C. because they 
were, he asserted, frequently used in architecture. Orlandos men-
tioned as an example the capitals of the columns of the Apollo 
temple in Corinth from around 540 B.C.14 (Fig. 3) Referring to the 
relevant statements made by Proklos and Eratosthenes, Orlandos 
attributed to Menaichmos (mid-4th century B.C.) the invention 

of conic sections and to Apollonius of Perga (260-200 B.C.) the 
authorship of the first systematic account on this subject. But he 
immediately added that Menaichmos’ achievement merely con-
sisted in having codified previous knowledge (132, n.3). Stevens 
and Orlandos’s arguments would hardly be defendable against 
the charge of speculation. But this was by no means the only 
problem of the parabola theory.

In his new essay, Stevens endeavoured to prove, on the ba-
sis of the measurements made by Lambadarios and Balanos, that 
the horizontal curves of the Parthenon were indeed parabolas. 

14 	 H. S. Robinson [Hesperia 45, 1976, 217, no 36] gives an even ear-
lier date: 570-560 B.C.

For the implementation of the proof, he basically employed the 
method of his 1934 article, this time plotting the curve at a sca-
le of 1:400, “a convenient scale for our purpose”, as he wrote. 
He concluded that “[t]he curve in the drawing almost perfectly 
represents a parabola”. The only concession that Stevens was pre-
pared to make to Carathéodory in this article consisted in the al-

lusion that the architects of the Parthenon employed parabolas for 
the curvatures, possibly without knowing exactly what they were 
doing or to which mathematical principle this curve was subject: 
“Whether he [Iktinos, one of the Parthenon architects] understood 
that his curve was a parabola must, the writer believes, remain a 
matter of speculation. Perhaps all that he knew was that he could 
obtain his curve easily and quickly by the scamilli impares me-
thod.” (p. 143) 

Stevens’s basic claim, however, did not remain undisputed. 
In 1991, Lothar Haselberger articulated the kernel of the critique 
by convincingly pointing out the perils of graphic representation 
with greatly distorted proportions. In order to make curves of such 
subtlety accessible to closer observation, he wrote, the curve’s 

Fig. 3   Capital from the Temple of Apollo at Corinth. Photo: S. Georgiadis.

Fig. 5   Exaggerated perspective representation of the general curvature of the stylobate and the cella of the Parthenon according to measurements by 
F. C. Penrose. Drawing by Orlandos. From: Αναστάσιος Κ. Ορλάνδος: Η αρχιτεκτονική του Παρθενώνος. Athens 1995 (1977-1978), p. 125.
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vertical ordinates are shortened only slightly or not at all, whereas 
horizontally, the curves are shortened very considerably. 

„With such distortion, a parabola indeed remains, as Stevens 
has shown, a parabola; but an ellipse, for example, would then 
also look like a parabola! Thus, a parabola-like appearance of 
a curve in graphic representation in no way presupposes that the 
actual curve has the form of a parabola. A parabola-like repre-
sentation is thus again a necessary, albeit not a sufficient conditi-
on for the (actual) form of a parabola.“15 
But already at an earlier date, some years after Stevens’s second 
article, the contribution of another scholar seemed to truly put 
an end to the entire dispute about the mathematical principle of 
the curves, or even, to lead it ad absurdum. Oscar Broneer, the 
American excavator at Corinth found out that the stylobate of the 
South Stoa at Corinth had a curvature of 15 centimetres over a 

15 	 Lothar Haselberger und Hans Seybold, Seilkurve oder Ellipse – Zur 
Herstellung antiker Kurvaturen nach dem Zeugnis der Didymei-
schen Kurvenkonstruktion, ΑΑ, 1991, 1, 165-188, here 178.

length of 164.47 metres. The building was 
erected in the 4th century B.C. and renova-
ted before 146 B.C. It spanned the entire 
southern side of the Agora. What was asto-
nishing about Broneer’s discovery was not 
so much the unusually mild ascent of the 
stylobate’s convex bend, but his statements 
about how the curve had been constructed:

„By actual experiments on a large sca-
le plan of the Stoa it was discovered that 
the curvature coincides with that of a string 
attached at both ends and allowed to sag 
in the center. The theory is thus put forth, 
substantiated by these experiments, that 
the ancient architects obtained the required 
curvature by the simple method of stret-
ching a string between the extremities of 
the building and permitting the center to 
sag to the desired amount. By merely in-
verting the curve thus obtained, a uniform 
convex curvature would be laid out in the 
same way. It is possible that in a building of 
such large size as that of the South Stoa, the 
curvature was laid out on a reduced scale, 
and expanded on the building itself.“
And Broneer concluded:

„The much debated question whether 
the curvature in ancient buildings is to be 
regarded as an arc of a circle or a para-
bola has thus found a new solution. It is 
neither. It is in a catenary, which in a curve 
as slight as this would be indistinguishable 
from a parabola.“16 

Broneer thus presented a method, 
which was, beyond all mathematical spe-
culation, exclusively based on experience, 
provided credible results and solved nearly 
all problems raised. One could even ima-
gine the scamilli impares (putting aside 
all speculation concerning odd numbers) 
as a method to invert the curve. The only 
problem left was that the proposed method 
could be verified on a building which had 
a rather great temporal distance from the 
Parthenon. 

This problem could only be addressed 
a quarter of a century later. The German 
architect and archaeologist Dieter Mertens 
discovered little cross-marks on the exter-
nal surface of the euthynteria17 of the temp-
le of Segesta, Sicily. They were scratched 
in regular distances on practically straight 
lines. They divided each long side of the 
euthynteria in eighteen parts and each 
short side in eight. The straight horizontal 
lines which they designated met the four 
corners of the temple at the level of the 
upper edge of the euthynteria. Mertens as-

sumed that the little cross-marks were zero-points of levelling 
lines, which served to produce the curvature of the euthynteria 
and consequently also of the steps of the crepis18. Mertens could 
thus carry out the following operation: He spanned strings around 
the euthynteria, from one corner to the other, let them sag to the 
measure of the curvature’s maximum rise, and obtained thus the 
full-scale ordinates (they corresponded to the distances between 
cross-marks and sagging string) of a curve which was practical-
ly identical with the actual curve of the euthynteria. For him, it 
was thus proved that “the curvature had been determined with 

16 	 O. Broneer, Measurements and Refinements of the South Stoa at 
Corinth, AJA 53 (1949) 146f.

17 	 Euthynteria = the Greek term for the special top course of a founda-
tion used as a levelling course. Cf. William Bell Dinsmoor: The 
Architecture of Ancient Greece. London and Sydney 1975 (1902), 
p. 391.

18 	 Crepis or Crepidoma = the Greek term for the stepped platform of a 
Greek temple (Dinsmoor, p. 390).

Fig. 4   Temple of Segesta: Krepis curvature. Photo: S. Georgiadis.
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the aid of a sagging string.” Finally, Mertens, hereby referring 
to Stevens, interpreted as scamilli impares the unequal distances 
between the sagging string and the scratched cross-marks.19 The 
construction of the temple of Segesta began in the last quarter 
of the 5th century B.C. It remained unfinished, probably due to 
the war of Segesta against Selinunt in 416 (Fig. 4). Thanks to 
Mertens’s observations, the temporal range of the validity of the 
curvature’s construction with a string was considerably exten-
ded towards the past in comparison with, for example, the South 
Stoa of Corinth and thus immediately approached the time of the 
Parthenon. 

But even the construction with a string did not remain without 
contestation. In 1979, the German architect and archaeologist 
Lothar Haselberger discovered at the Younger Apollo Temple 
in Didyma (Asia Minor) the oldest preserved Greek architectu-
ral drawings. They were scratched on a surface of around 200 
square metres on the inner faces of the stone walls of the Adyton 
(the inner or holiest room of a temple).20 One of them was the 
construction drawing of the entasis curve for the columns of the 
temple. The length of the column shaft had been shortened to a 
simple scale, whereas all other measures appeared in real size. 
The profile of the entasis was drawn – after its maximum rise 
was fixed – as a simple circular arc with a radius of 3.2 metres. 
The radii of all shaft cross-sections were thus available in real 
size. In an essay, which Haselberger wrote with the mathemati-
cian Hans Seybold in 1991,21 he expressed the idea that the sty-
lobate curvature could also be obtained by employing the same 
construction principle by simply turning the work drawing by 
90° (169). The curve resulting from this would be, “according to 
the mathematical-geometrical definition a segment of an ellipse, 
resulting from a homogeneously stretched segment of a circular 
arc” (172). Haselberger then compared the Didyma-method with 
the Segesta string curve. Despite the fact that the construction 
at Didyma – just as the string construction – did not presuppose 
“any knowledge of curve types and mathematical calculations”, 
the Didyma-method was by far more sophisticated than the string 
method of Segesta both in terms of planning as in terms of dra-
wing. The string method could also “very well be regarded as a 
more primitive and perhaps older method, whereas the Didyma 
construction could be considered a more developed and maybe 
more recent method that served more delicate requirements.” 
(182). In view of the more recent date of the Didymaion (the 
erection of the building began shortly after Alexander the Great 
conducted his campaign in Asia Minor in 344/343 B.C.), this as-
sumption is not implausible. But so long as it cannot be proven, 
it will hover in vacuo, as it were.

It is thus evident that scholars attempting to answer the ques-
tion about the stylobate curvature (and one has to really keep 
in mind that this merely involves only one refinement-category) 
are confronted with some very critical problems. The greatest 
difficulty of all theories up to now is however oversimplifica-
tion. Joseph Hoffer already hinted at the matter when he wrote 
in 1838: “Since two different curves – namely that of the long 
and that of the short side – meet at the corner-stone of each side 
[of the stylobate], this corner-stone would actually have to be a 
broken surface, because both curves would have cut each other 
in the diagonal.” (p.380) In other words, Hoffer clarifies that the 
curvature is not an issue to be tackled in two dimensions, but has 
consequences on the entire stylobate surface, which – precisely 
because of the curvature – cannot be plane, but curved. The sty-
lobate would consequently be a vault. And the problem becomes 
even more complicated if one keeps in mind that the curvatures 
of the long and short sides respectively differ from each other. 
The idea of a curved stylobate surface underlies Orlandos (Fig. 
5) and Coulton’s attempts at three-dimensional representation of 
the curvature in exaggerated scale. Notwithstanding, scholars 
treat the question about the curve, its character and its manner of 
construction at the edge of the stylobate, or of the steps of the cre-
pis, or of the euthynteria, that is, as if it were a two-dimensional 

19 	 Dieter Mertens, Die Herstellung der Kurvatur am Tempel von Se-
gesta, RM 81 (1974) 107-114 (+ plate 85).

20 	 Lothar Haselberger, The Construction Plans for the Temple of 
Apollo at Didyma, Scientific American (Dec. 1985) 126-32.

21 	 Lothar Haselberger und Hans Seybold, Seilurve oder Ellipse? – Zur 
Herstellung antiker Kurvaturen nach dem Zeugnis der Didymei-
schen Kurvenkonstruktion, AA (1991) 165-188.

problem. Indeed, the spatial impact of the curvature can hardly 
be determined in a reliable manner through measurements and 
observations due to the state of preservation of the monuments. 
On the other hand, one would have to admit that the question 
about the essence22 of the curvature can then hardly be answered 
in a satisfactory manner. 

Since, in turn, the ancient sources do not provide sufficient 
information about the meaning and purpose of the curvature, the 
intentions pursued by the ancient architects through this rather 
elaborate practice remain in the dark. Was it functional considera-
tions that led them, or are aesthetic thoughts to be regarded as the 
cause of the “refinements” (Penrose), or “optical corrections”23 
(Thiersch), or simply the “niceties” of design24 (Lawrence)? Or 
is it finally the symbolic meaning of the curvature, still hidden to 
us, which would be able to determine and explain its shape?

22 	 Lothar Haselberger (ed.) Appearance and Essence – Refinements of 
Classical Architecture: Curvature. Proceedings of the Second Wil-
liams Symposium on Classical Architecture held at the University 
of Pennsylvania, Philadelphia, April 2-4, 1993. Philadelphia 1999. 
Thanks to Dieter Mertens for the discussion about the three-dimen-
sionality of the stylobate curvature.

23 	 A. Thiersch, Optische Täuschungen auf dem Gebiete der Architek-
tur, Zeitschrift für Bauwesen, XXIII (1873) 10-38.

24 	 A. W. Lawrence (Revised by R. A. Tomlinson). Greek Architec-
ture. 5th ed. New York 1996, p. 125.


